

About the Presentations

- The presentations cover the objectives found in the opening of each chapter.
- All chapter objectives are listed in the beginning of each presentation.
- You may customize the presentations to fit your class needs.
- •Some figures from the chapters are included. A complete set of images from the book can be found on the Instructor Resources disc.

Hands-on Networking Fundamentals, 2nd ed.

Chapter 1: Networking: An Overview

Objectives

- Explain what a network is
- Understand basic networking concepts and terms
- Explain the advantages of using a network in the home
- Discuss the advantages of using a network in an office

Objectives (continued)

- Determine boundaries between networks
- Describe network topologies
- Understand general network design concepts
- Design a simple LAN

What Is a Network?

- Three types of networks
 - Word-of-mouth communication
 - Cell phone or telephone
 - Computer
- Computer networks
 - A system of computers, print devices, network devices, and computer software
 - Devices are linked together via radio waves or communications cable
 - Carry data, voice, and video communications

What Is a Network? (continued)

- System components linked using various media
 - Copper wire
 - Fiber-optic cables
 - Radio waves
 - Infrared waves
 - Microwaves
- Advantages of computer networks
 - Ability to easily share information such as documents, pictures, printers, etc...
 - Ability to exchange e-mail anywhere in the world

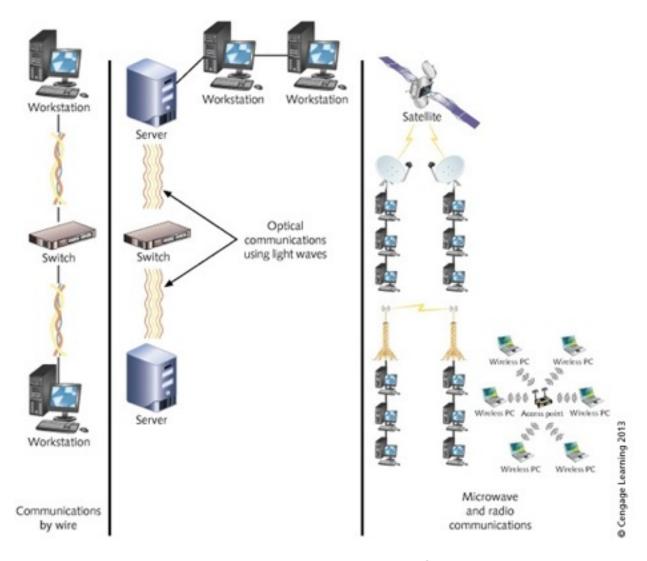


Figure 1-1 Network commnications by wire, fiber-optics, and radio waves

Basic Networking Concepts

- The following section of the text will discuss:
 - Different network types
 - Different terms for various network elements
 - Processes about how networks should work

- Five types of networks
 - Personal area networks (PANs)
 - Local area networks (LANs)
 - Metropolitan area networks (MANs)
 - Campus area networks (CANs)
 - Wide area networks (WANs)
- Networks are typically classified according to their reach and complexity

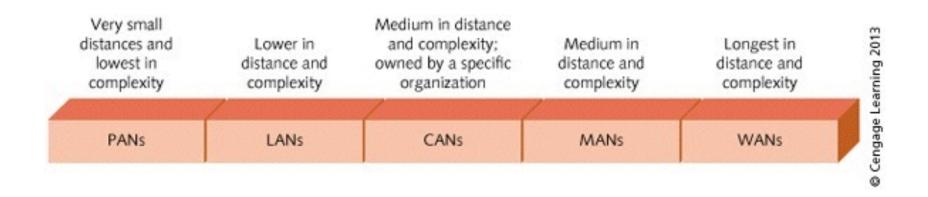


Figure 1-2 Comparison of PANs, LANs, CANs, MANs, and WANs

- PAN and wireless PAN(WPAN)
 - Usually consist of personal devices such as mobile computers, smartphones, and handheld devices.
 - Cabled PAN networks connect devices using short distance cables typically connected through a Universal Serial Bus (USB) port

Figure 1-3 A desktop PC, a smartphone, and a tablet PC forming a PAN

LAN

- Interconnects computers, printers, other equipment that share hardware and software resources in close physical proximity
- Service area might be within a house, a small office, a floor in a building, or an entire building
- Example: a university chemistry department where computers in each office and lab are connected via cable or wireless devices

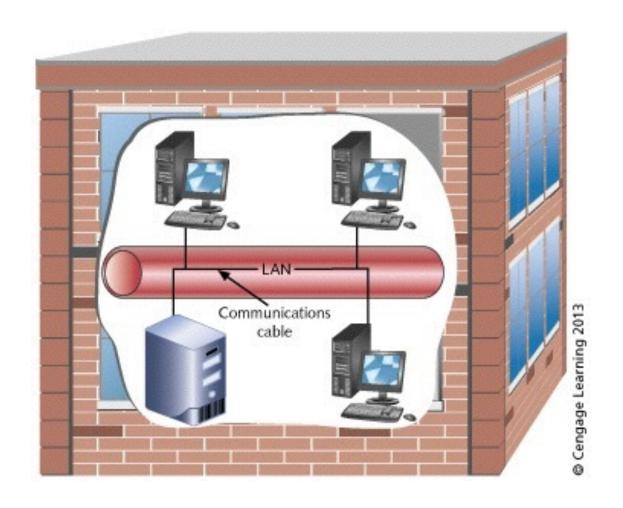


Figure 1-4 LAN in a chemistry building

- MAN (metropolitan area network)
 - Spans a greater distance than a LAN
 - Up to 48 kilometers (about 30 miles)
 - Usually consists of more complicated networking equipment than a LAN
 - Links multiple LANs within city or metropolitan region
 - Typically uses fiber-optic/wireless connections
 - Individual LANs that compose a MAN may belong to the same organization or to several different organizations

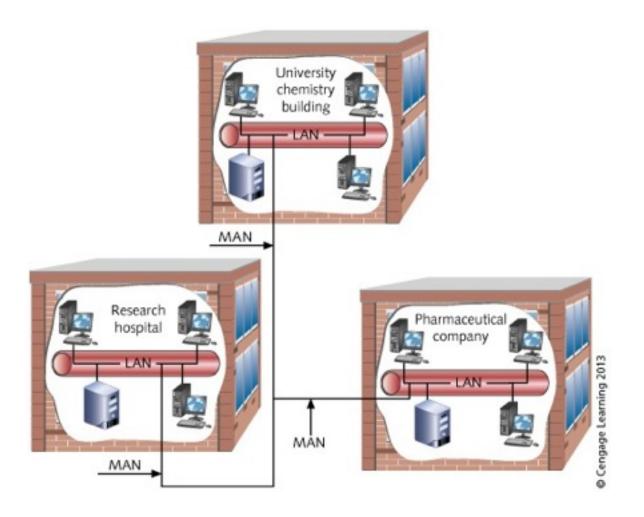


Figure 1-5 MAN joining three buildings in different locations within the same city

- CAN Campus Area Network
 - Similar to a MAN
 - Joins multiple LANs in a specific area
 - Difference is that all of the LANs and the buildings housing the LANs are owned by one organization
- WAN (wide area network)
 - Composed of two or more LANs, MANs, or CANs
 - Connected across a distance greater than 48 km (30 miles)
 - May have constituent LANs and MANs on different continents

- Enterprise network another way to classify a network
 - Usually consists of several LANs that compose a MAN, CAN, or WAN
 - Connects different kinds of users across one or more organizations
 - Provides a variety of resources in order to fulfill business, research, educational tasks
 - Example: a university network that connects academic, accounting, student services, human resources, and other resources

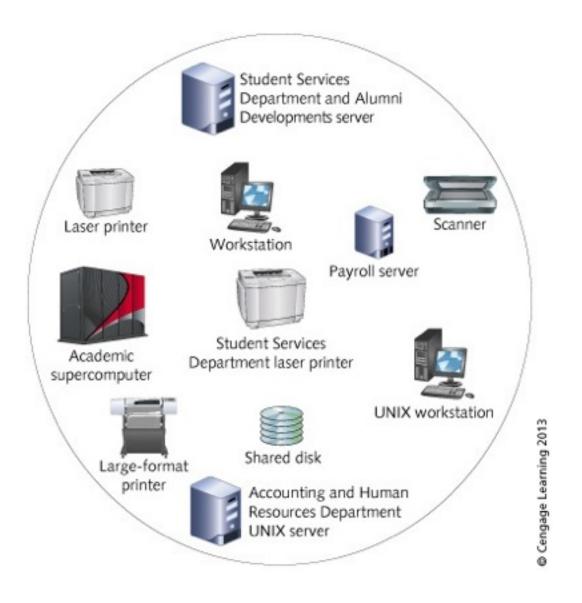


Figure 1-6 Resources in an enterprise network

- Node (or station): any device connected to a network
 - Personal computer, server, mainframe, supercomputer, printer, fax, DVD/CD-ROM, disk array, network device
- Nodes are connected through communications media
 - Wire cabling, fiber-optic cables, radio or infrared waves
 - Media allows transmission of signals to and from nodes
- Three network nodes important to users:
 - Workstations
 - Hosts
 - Servers

- Workstation computer
 - Has CPU (central processing unit) and operating system
 - Runs local applications such as Microsoft Office
 - Runs network applications to access data on a server or mainframe
 - May fulfill roles as client and host
 - Client: workstation accessing data or software on another computer
- Host the computer accessed for data or software by a client workstation

Servers

- Powerful computers offering multiuser access
- Holds software applications and data files
- Host from two to as many as several thousand users
- Network operating system must be installed
 - Example: Microsoft Windows Server operating system
- Users who visit a website are accessing a server
- Network nodes attach to media through a NIC
- NIC (network interface card)
 - Board installed in computer or network device
 - Attached to communication media by connector or antenna

- Protocol "languages" used by computers and network devices in order to communicate with one another
 - Internet Protocol (IP) is the main protocol used for network communications
 - IP is explained in greater detail in Chapter 3

Understanding Network Concepts in Historical Context

- Why study the history of networking?
 - Shows how networking practices and concepts have evolved
 - Provides social, political, technical context
- LANs/WANs rooted in telegraph and telephone systems
- Driving forces in networking technology
 - Interpersonal communication
 - Business transactions
 - Entertainment products

Using a Network in a Home

- Many homes now have two or more computers or other devices that can be networked together
- Three prominent uses of home networks
 - Sharing files and printers
 - Accessing the Internet and entertainment resources
 - Connecting home resources
 - Computers, entertainment devices, appliances

Connecting Computers for Sharing Files and Printers

- A home network can be used to:
 - Transfer files from computer to another (such as a laptop from work to a desktop at home)
 - Back up files from one computer to another
- Three common ways to share printers
 - Connect a printer to a computer and make it a shared network printer
 - Limitation: no one can use printer if computer is off
 - Attach printer directly to network using built-in NIC
 - Use a network device called a print server to connect one or more printers to the network

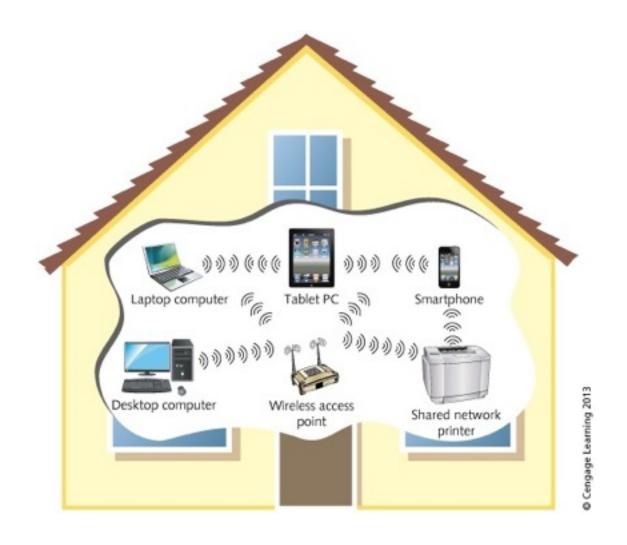


Figure 1-8 Sharing a printer on a wireless home network

Using Internet and Entertainment Resources

- Several methods for sharing an Internet connection
- Internet Connection Sharing (ICS) using Windows 7
 - Configure Internet sharing:
 - Create Internet connection with a Windows 7 computer
 - Connect that computer to your home network
 - Configure ICS in Windows 7 to allow that computer to act as a host so that other devices can access the Internet
 - Can also be set up in Windows Server 2008 R2
- Mac OS X Snow Leopard and Lion also offer a means to share an Internet connection

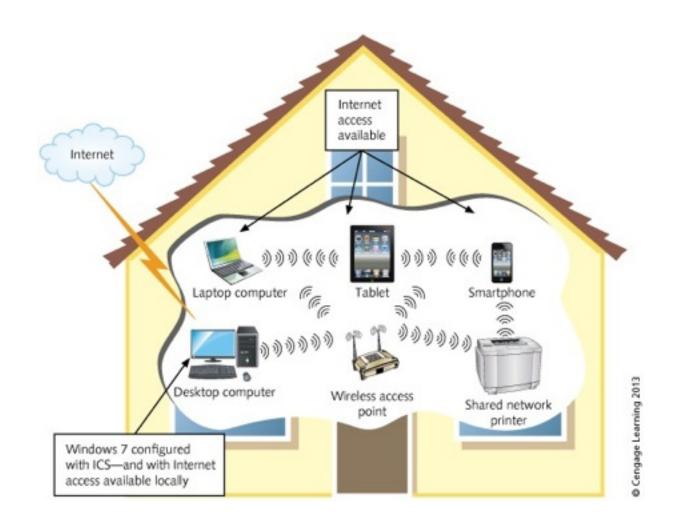


Figure 1-9 Using ICS in Windows 7

Using Internet and Entertainment Resources

- Some digital video devices and TVs come with a NIC
 - When connected to a network they can access video files or DVDs
- TVs with a NIC can connect to the Internet and play streaming videos and movies
- Smartphones and small tablets have wireless NICs that connect to wireless networks
 - iPhone and iPad use iOS operating system
 - Smartphones and tablets not made by Apple typically run the Android operating system

Connecting Home Resources

- Home appliances can be network devices
 - Example: refrigerators with digital message boards
 - Enable you to display messages from the Internet on the refrigerator message board
- Other control features enhanced in home networks
 - Temperature settings
 - Turning music on/off
 - Managing lighting systems

Using a Network in an Office

- In the following sections you will learn more about the following:
 - Using a network to save time and money
 - Using a network as a business strategy
 - Connecting office resources

Using a Network to Save Time and Money

- Two ways networks save time and money
 - Share information without leaving office
 - Telecommute to office via home network
- Example: An accountant's meeting with a client
 - Tax information is entered on networked computer
 - Tax documents can then be sent to shared printer
 - Editing and compiling can be done by an associate
 - Tax document returned to accountant
 - Meeting continues uninterrupted
 - Bill generated after meeting concludes

Using a Network as a Business Strategy

- The following two business strategy examples show how companies can benefit from a well-planned network (both strategies involve companies that sell specialty foods)
- Scenario 1:
 - Customer places order over the Internet
 - Order is manually transcribed to piece of paper
 - Data-entry clerk enters the order so a bill is generated
 - Data-entry clerk hand delivers order to inventory clerk
 - Inventory clerk prepares item for delivery
 - Usually takes 3 to 5 business days to be shipped

Using a Network as a Business Strategy

- Scenario 2 A company that is fully networked
 - Customer places order over the Web
 - Order automatically entered into processing server
 - Order-processing server generates bill
 - Order-processing server sends data to processing area
 - Inventory automatically adjusted for order
 - Item sent out to customer same day as order came in
- The company in scenario 2 handles more volume and will most likely get more future orders due to their efficiency

Connecting Office Resources

- Advantages to networking office equipment
 - Same as for networking home devices, but multiplied
- Example of printer sharing in office of 28 people
 - Instead of 28 printers, only 3 or 4 printers are needed (centrally located)
 - Benefits
 - Save space for other activities
 - Reduce cost of providing print capability to office workers
 - Reduce cost of maintenance and cartridge replacement

Connecting Office Resources

- Resources shared when connected to a network
 - Files
 - Printers
 - DVD/CD-ROMs
 - Network storage through disk arrays
 - Centralized tape or DVD/CD backups of critical files
 - Fax machines
 - Specialty printers, such as large-format printers
 - Network conferencing devices
 - Internet connectivity
 - Internet telephony

- Distinguish network types using four properties
 - Communications medium
 - Protocol
 - Topology
 - Network type (private versus public)
- Communications medium
 - Often a LAN ends where there is a change in medium
 - Boundary 1: fiber-optic cables linking wire-cable LANs
 - Boundary 2: medium change from fiber-optics to microwaves or radio waves

Protocols

- Specify the formatting of the data and how it will be transmitted
 - Units of data are called packets or frames
- Change/addition to protocol often signals LAN boundary
- Example: a wired network differs from a wireless network in the way data is transferred

- Topology
 - Two components:
 - Physical layout of network cables and devices
 - Logical path followed by network packets or frames
 - In a wired network physical layout is the actual path of the cable
 - In a wireless network path is related to the placement of antennas on network devices
 - The logical path is the direction in which packets/ frames flow
 - May or may not fully match the physical layout

- Network types
 - Often change at network boundary
 - Example: beginning/end points of public and private networks
- Private networks owned and operated by organization
- Public networks offer services to public
- Virtual private network (VPN)
 - Private network tunnels through larger network
 - Restricted to designated member clients

Network Topologies

- Topology: physical layout combined with logical path
- Cable plant: pattern of physical layout
 - Wired networks: pattern of cabling laid in office, building, or campus
 - Wireless networks: types of antennas, devices, and the direction of transmission
- Decentralized network layout
 - Cable running between each station on network
 - Analogy: mountain climbers connected by a rope
- Centralized network layout
 - Each station physically connected to central device
 - Analogy: star with workstation as its points

Network Topologies

- Main topologies: bus, ring, star, mesh, and tree
- Hybrid topologies: star-bus, star-ring
- Selecting topology for network
 - Consider intended purpose for the network
 - Demand for network services
 - Number and kinds of applications used
 - Network traffic (number and frequency of frames to transmit)
 - Connection to other networks
 - Security needs
- Network topology influences network growth potential

Bus Topology

- Bus topology
 - Consists of cables connecting PCs or file servers together like a chain
 - Terminator attached to each end of bus cable segment
 - There is a beginning and an end to each segment
- When transmitting a packet across a bus:
 - It is detected by all nodes on the segment
 - Given time limit to reach destination or it is considered late
- IEEE (Institute of Electrical and Electronics Engineers)
 - Develops standards for network cabling, transmission

Figure 1-15 Bus topology

44

Bus Topology

- Terminator signals end of physical segment
 - Functions as a resistor that absorbs signal
 - Prevents signal reflection back on to the cable path
- Advantages of bus design
 - Requires less cable than other topologies
 - Easy to extend bus with a workstation
- Disadvantages of bus topology
 - High management costs
 - Single defective node can take down entire network
 - Can become quickly congested with network traffic

Ring Topology

- Ring topology: continuous data path with no beginning or ending point
 - Workstations attached to cable at points around ring
- Transmitting data across ring topology
 - Goes around ring to reach destination
 - Continues until ends at source node
- Advantages to ring topology
 - Easier to manage than bus
 - Suited to transmitting signals over long distances
- Disadvantages to ring topology
 - More expensive to implement than bus
 - Has become outdated so there are fewer equipment options

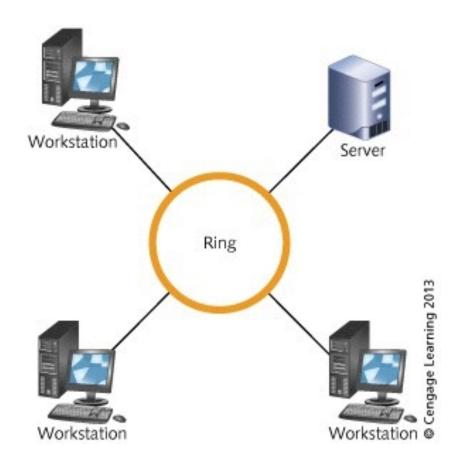


Figure 1-16 Ring topology

Star Topology

- Star topology: multiple nodes attached to central device (hub, switch, router)
 - Cable segments radiate from center like a star
 - Example: workstations/servers connected to a switch
- Advantages of star topology
 - Start-up costs are much lower than other topologies
 - Easier to manage, defective nodes quickly isolated
 - Easier to expand by connecting nodes or networks
 - Offers better equipment and high-speed options
 - Cabling and connectors are less expensive
- Disadvantages of star topology
 - Failure of central device may cause network failure
 - Requires more cable than bus

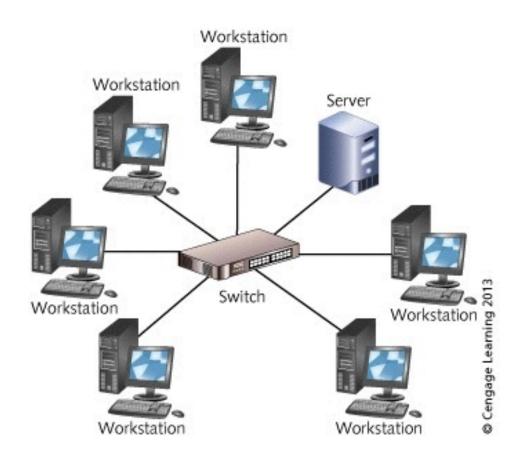


Figure 1-17 Star topology

Star-Bus Hybrid Topology

- Star-bus (star-wired) topology
 - Each radiating finger is separate logical bus segment
 - Each segment terminated at both ends
- Advantages of star-bus topology
 - No exposed terminators
 - Easily connect switches/routers to expand network
 - Connection between central devices is a backbone
 - Backbone enables high-speed communication
 - Central devices have built-in intelligence to help detect problems
 - Many equipment and high-speed options available

Star-Ring Hybrid Topology

- Star-ring (star-wired) topology
 - Hub or access unit acts as linking device
 - Transmission of signal uses logical communication of ring
 - No need for built-in terminators

Mesh Topology

- Mesh topology
 - Every node is connected to every other node in network
 - Provides fault tolerance
 - Fault tolerance: built-in protection against failure
 - If link breaks, nodes can still communicate
 - Alternate communication paths increase as number of nodes increase
- Mesh topology is used less on cabled LANs
 - Expensive to implement
- Often used in MANs and WANs due to reliability

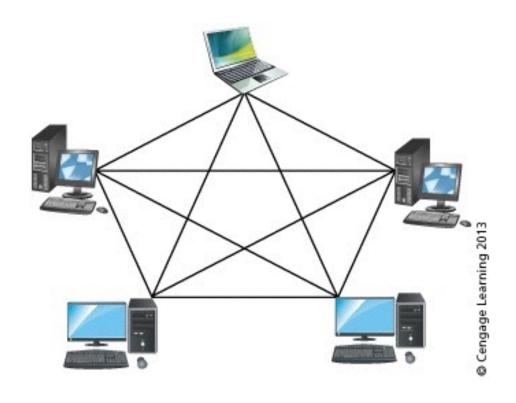


Figure 1-19 Mesh topology

Tree Topology

- Tree topology (expanded star)
 - Consists of a trunk (or bus) with limbs and branches (star)
- Advantage of the tree topology:
 - Can segregate network traffic so that communications in one limb of the tree can be isolated from other limbs
 - Important for highly secure networks
- Disadvantage of the tree topology:
 - On cabled networks, may require more cable
 - If main trunk is down, connected limbs can not communicate with one another

Network Design Introduction

- Step 1: Understand protocols, access methods, topologies
 - Example: Telecommunications-based WAN vs. satellitebased WAN
- Step 2: Understand physical equipment used
 - Example: Different media is used for backbone and internal network nodes
- Step 3: Understand basic network design principles
 - Structured wiring and networking techniques
 - Designing for multimedia and client/server applications
 - Taking advantage of LAN and WAN characteristics

Network Design Introduction

- Step 4: Assess characteristics of the planned network
 - Types of computers used as well as location
 - Software applications used and resources required
 - Patterns in organization relative to network use
 - High and low network use periods
 - How to simplify troubleshooting and maintenance
 - Determine security need for the network
 - Anticipate how growth will affect network resources

Putting It All Together: Designing a Simple LAN

- Scenario: Small law office with 4 attorneys & 1 secretary
- Four components of solid design
 - Star-bus hybrid topology
 - Switch connecting computes in middle of star layout using network cable (see figure on upcoming slide)
 - Ability to share certain information on network
 - Ability to share printers on network

Putting It All Together: Designing a Simple LAN

- Rationale for the design:
 - Star-bus economical to implement and maintain
 - Using cable instead of wireless due to sources of interference and building construction
 - Use of switch satisfies need for fast communication
 - Resource sharing using peer-to-peer network instead of using a server
 - Clients decide which files to share
 - Printers can be shared
 - Network will be simple and easy to maintain
 - Internet access easily added

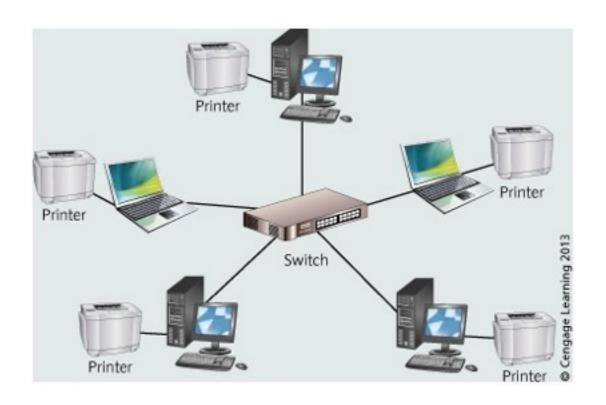


Figure 1-22 Designing a network for a small law office

Summary

- A computer network consists of computers, printers, network devices, and software shared through a system of wired & wireless connections.
- Five main network types: PANs, LANs, MANs, CANs, and WANs.
- Networks consist of nodes, such as workstations and servers. The cable or radio waves that link nodes compose the communications media and are connected through network interface cards (NICs).

Summary

- Networks offer advantages for homes that have two or more computers – file and printer sharing and Internet connectivity.
- Networks in offices enable businesses and organizations to be more productive and to develop business strategies for optimal effectiveness.
- Ways to determine network boundaries include examining communications media, protocols, topologies, and network types.

Summary

- Networks are designed in terms of topologies. The basic network topologies are bus, ring, star, mesh, and tree. Two other topologies are hybrid: star-bus and star-ring.
- To design networks effectively, you need to understand protocols, topologies, network equipment, design principles, and how to assess the networking needs of an organization.