Hands-on Networking Fundamentals, 2<sup>nd</sup> ed.

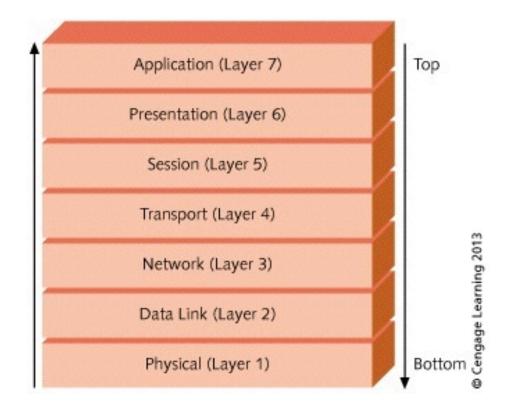
Chapter 2: How LAN and WAN Communications Work

### Objectives

- Explain the OSI reference model, which sets standards for LAN and WAN communications
- Discuss communication between OSI stacks when two computers are linked through a network
- Apply the OSI model to realistic networking situations
- Describe major LAN transmission methods

### **Objectives** (continued)

- Explain the basic WAN network communications topologies and transmission methods, including telecommunications, cable TV, satellite and wireless technologies
- Explain the advantages of using Ethernet in network designs


- Networks work because standards have been implemented to ensure devices from different vendors will work together
- Open Systems Interconnection (OSI) reference model
   Fundamental network communications model
- Understanding the OSI model enable you to:
  - Choose the best equipment for the job
  - Create the most effective network designs
  - Design networks that will communicate with other networks
  - Troubleshoot network problems more effectively

- OSI model product of two standards organizations
  - International Organization for Standardization (ISO)
  - American National Standards Institute (ANSI)
- The OSI model was developed in the 1970s
- Represents an effort to standardize network software and hardware implementation

- Accomplishments of the OSI model
  - Enabled communications among LANs, MANs, WANs
  - Provided standardization of network equipment
  - Enabled older equipment to communicate with newer equipment
  - Enabled development of software and hardware with common interfaces
  - Made worldwide networks possible; e.g., the Internet
- OSI has set the stage for cooperative networking and is constantly evolving to accommodate new networking developments

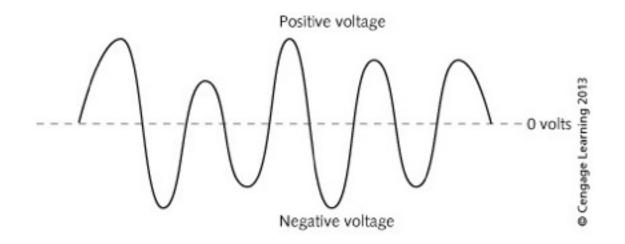
- The OSI model is a theoretical model and not a specific hardware device or software routine
- It is a set of guidelines for vendors to consider and follow when they design communications hardware of software
- OSI guidelines specify:
  - How network devices contact each other and how devices using different protocols communicate
  - How a network device knows when to transmit or not transmit data

- OSI guidelines specify (continued):
  - How the physical network devices are arranged and connected
  - Methods to ensure that network transmissions are received correctly
  - How network devices maintain a consistent rate of data flow
  - How electronic data is represented on the network media
- There are 7 layers in the OSI Model: Physical, Data Link, Network, Transport, Session, Presentation, and Application



#### Figure 2-1 The OSI layers

- Set of layers in OSI model is called a stack
- Communications between two network devices go up and down the layered stack at each device
- Contact between a workstation and server
  - Communications begin at the Application layer of the workstation
  - Specific information is formatted at each layer of the stack until reaching the Physical layer where it is sent out to the communication medium
  - The server picks up the data at the Physical layer and sends it up each layer for interpretation until reaching the Application layer


- Each layer is called by its actual name or by its placement in the stack
  - Example: Layer 1 or Physical Layer
- Bottom layers perform functions like constructing frames and transmitting packets/frames/signals
- Middle layers coordinate network communication between nodes, ensuring sessions without interruptions or errors
- Top layers perform work that directly affects software applications and data presentation

#### **Physical Layer**

- Layer purpose: transmit and receive signals with data
- Responsibilities of the Physical layer (Layer 1)
  - All data transfer mediums
    - wire cable, fiber optics, radio waves, and microwaves
  - Network connectors
  - The network topology
  - Signaling and encoding methods
  - Data transmission devices
  - Network interfaces
  - Detection of signaling errors

### **Physical Layer**

- Network signals are either analog or digital
- Analog signal
  - Wave pattern with positive and negative voltages
  - Examples: ordinary telephone or radio signal
  - Used in WANs that employ analog modems
- Digital signal generates binary 1s or 0s
  - Most common signaling method on LANs and highspeed WANs
  - Example 1: +5 volts produces 1, 0 volts produce 0
  - Example 2: +5 volts produces 1, -5 volts produce 0
  - Example 3 (Fiber-optics): presence of light is 1, else 0



#### Figure 2-2 An analog signal

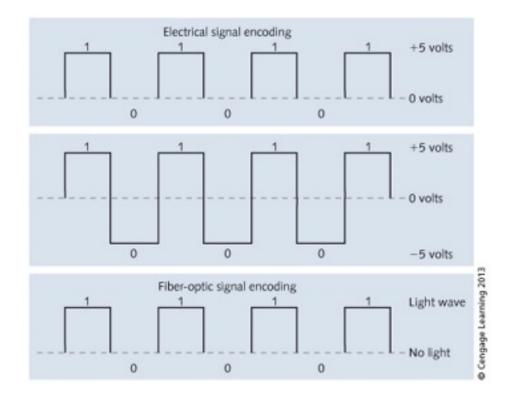



Figure 2-3 Examples of digital signals

### **Physical Layer**

- The Physical layer:
  - Converts bits into voltage for transmission
  - Handles data transmission rate
  - Monitors data error rates
  - Handles voltage levels for signal transmissions
- Electromagnetic interference (EMI)
  - Generated by certain electrical devices
    - Fans, electric motors, portable heaters, air-conditioners
- Radio frequency interference (RFI)
  - Caused by electrical devices emitting radio waves
    - Radio and television stations, radio operators, cable TV
  - Problem when frequency matches network signal

Hands-on Networking Fundamentals © 2013 Cengage Learning

- Layer purpose: organize bits and format into frames
- Frame: unit of data transmitted on a network
  - Contains control and address information
  - Does not contain routing information
- How Data Link layer works:
  - Data Link layer formats the frame into an electrical signal and transfers it to the Physical layer to be placed on the communications medium
  - Receiving node then picks up the frame via the Physical layer, decodes the signal, organizes the bits into a frame, and checks the frame for errors

- Data Link layer checks incoming signals for duplicate, incorrect, or partial data
- If an error is detected, it requests a retransmission of the data
- Error detection is handled by cyclic redundancy check (CRC)
  - Calculates size of information fields in frame
  - Data Link layer at sender inserts value at end of frame
  - Receiving Data Link layer checks value in frame

- Data Link layer contains two important sublayers
- Logical link control sublayer (LLC)
  - Initiates communication link between two nodes
  - Guards against interruptions to link
  - Link to Network layer may be connection-oriented
- Media access control sublayer (MAC)
  - Examines physical (device or MAC) address in frame
  - Frame discarded if address does not match workstation
  - Regulates communication sharing
- MAC address burned into chip on network interface
  - Coded as a hexadecimal number; e.g., 0004AC8428DE
    - First half refers to vendor, second half unique to device

- Two types of services are used for communication between the LLC sublayer and the Network layer
  - Type 1 a connectionless service (does not establish a logical connection between nodes)
    - Frames are not checked to ensure that they are in the proper sequence, there is no acknowledgment, and there is no error recovery
  - Type 2 a connection-oriented service (a logical connection is made before full data transfer begins)
    - Each frame contains a sequence # to ensure they are processed in the proper order, sending node does not transmit data faster than can be received, and if errors are detected the data is retransmitted

### **Network Layer**

- Layer purpose: controls passage of packets along routes on the network
  - Physical routes: cable and wireless paths
  - Logical routes: software paths
- Packet: unit of information (like a frame)
  - Formatted for transmission as signal over network
  - Composed of data bits in fields of information
  - Corresponds to network information sent at Network layer of OSI model
- Specific tasks of Network layer
  - Optimize physical and logical routes
  - Permit routers to move packets between networks

Hands-on Networking Fundamentals © 2013 Cengage Learning

### **Network Layer**

- Discovery: process of information gathering to determine the best path to a destination network
- Virtual circuits: logical communication paths
  - Send and receive data
  - Known only to Network layers between sending and receiving nodes
  - Benefit: manage parallel data paths
- Extra duties using virtual circuits
  - Checks (and corrects) packet sequence
  - Addresses packets
  - Resizes packets to match receiving network protocol
  - Synchronizes flow of data between Network layers

Hands-on Networking Fundamentals © 2013 Cengage Learning

#### **Transport Layer**

- Layer purpose: reliable data transmission
  - Ensures data sent and received in same order
  - Receiving node sends acknowledgement ("ack")
- Transport layer is responsible for tracking virtual circuits
  - Tracks unique identification value assigned to circuit
    - Value is called a port or socket
    - Port or socket is assigned by Session layer
  - Establishes level of packet error checking
- There are 5 reliability measures used by Transport layer protocols (Class 0 – Class 4)
- Fragments messages into smaller units

#### **Session Layer**

- Multiple goals
  - Establish and maintain the link between two nodes
  - Provide for orderly communication between nodes
    - Establishes which node transmits first
  - Determine how long node can transmit
  - Determine how to recover from transmission errors
  - Link each unique address to a node (like a zip code)
  - Disconnects link after communication session is finished

#### **Session Layer**

- Two-way alternate mode (TWA) for dialog control
  - Sets up node to separately send and receive
  - Analogize to use of walkie-talkies
  - Used in half-duplex communications
- Two-way simultaneous (TWS) for dialog control
  - Devices configured to send and receive at same time
  - Increases efficiency two-fold
  - Made possible by buffering at network interface
  - Used in full-duplex communications

### **Presentation Layer**

- Primary purpose: manages data formatting
  - Acts like a syntax checker
  - Ensures data is readable to receiving Presentation layer
- Translates between distinct character codes
  - EBCDIC (Extended Binary Coded Decimal Interchange Code)
    - 8-bit coding method for 256-character set
    - Used mainly by IBM computers
  - ASCII (American Standard Code for Information Interchange)
    - 8-bit character coding method for 128 characters
    - Used by workstations running Windows 7, UNIX/Linux, or Mac OS X

#### **Presentation Layer**

- Two additional responsibilities
  - Data encryption: scrambling data so that it cannot be read if intercepted by unauthorized users
    - Example 1: account password encrypted on LAN
    - Example 2: credit card encrypted on a LAN
    - Encryption tool: Secure Sockets Layer (SSL)
  - Data compression: compact data to conserve space
    - Presentation layer at receiving node decompresses data

### **Application Layer**

- Layer purpose: Govern the user's most direct access to applications and network services
- Services managed by Application layer
  - File transfer, file management, remote access to files and printers, message handling for electronic mail, and terminal emulation
- Connecting workstations to network services
  - Link application into electronic mail
  - Providing database access over the network
- Microsoft Windows redirector works through this layer
  - Makes computer visible to another for network access
  - Example: access shared folder using redirector

## **Communicating Between Stacks**

- OSI model enables two computers to communicate
- OSI model provides standards for:
  - Communicating on a LAN
  - Communicating between LANs
  - Internetworking between WANs and LANs (and WANs)
- Constructing a message at the sending node
  - Message created at Application layer
  - Message travels down stack to Physical layer
  - Information at each layer is added to message
    - Layer information is encapsulated
  - Message sent out to the network on the Physical layer

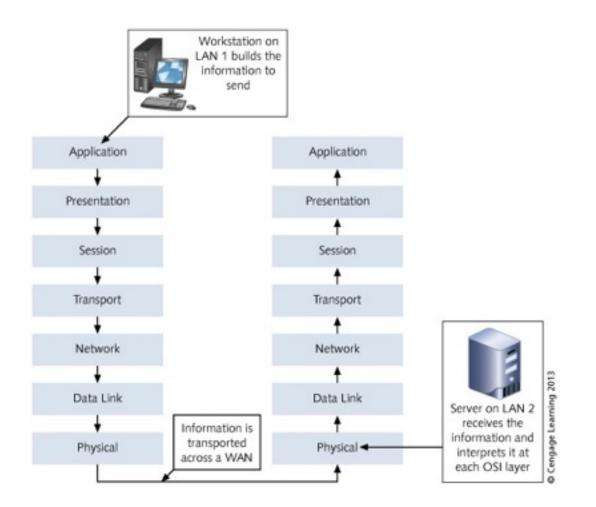



Figure 2-11 Sending information through the OSI reference model

Hands-on Networking Fundamentals

© 2013 Cengage Learning

### **Communicating Between Stacks**

- Interpreting the message at the receiving node
  - Message travels up stack from Physical layer
  - Data Link layer checks address of frame
  - Data Link layer uses CRC to check frame integrity
  - Network layer receives valid frame and sends up stack
- Peer protocols: enable the sending layer to communicate with the receiving layer
- Information transferred using primitive commands
  - Protocol data unit (PDU) as information goes from one layer to the next, new control information is added to the PDU

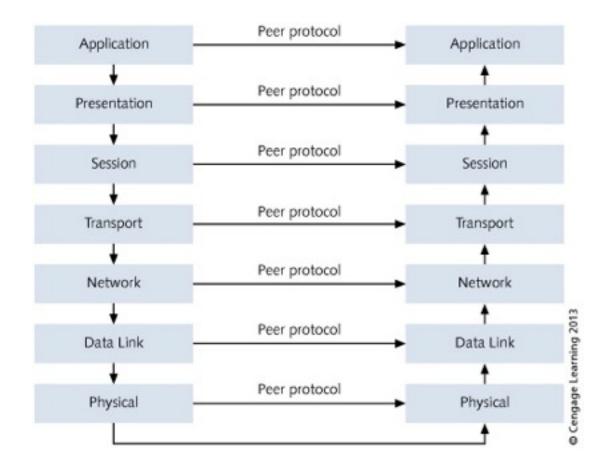
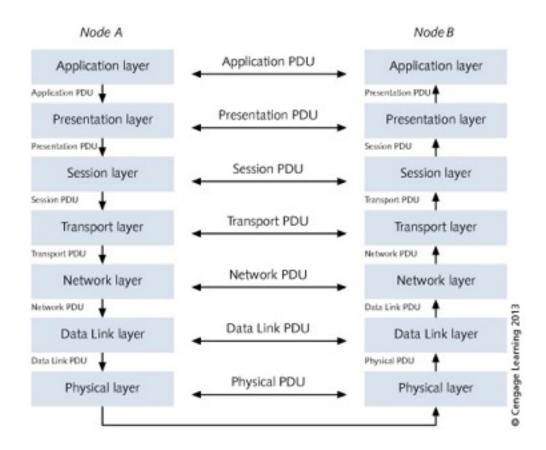




Figure 2-12 Peer protocol communications between the same layers

Hands-on Networking Fundamentals © 2013 Cengage Learning

#### **Communicating Between Stacks**

- Control data added to PDU as it traverses stack
  - Next layer gets transfer instructions from previous layer
    - Next layer strips transfer/control information
    - Service data unit (SDU) remains after data stripped
  - Peer protocols used to communicate with companion layer
- Key points
  - Each layer forms a PDU (from an SDU)
  - Each PDU is communicated to counterpart PDU



#### Figure 2-14 Layered communications using PDUs

Hands-on Networking Fundamentals © 2013 Cengage Learning

## Applying the OSI Model

- Example: Workstation accessing a shared drive
  - Redirector at Application layer locates shared drive
  - Presentation layer ensures data format is ASCII
  - Session layer establishes and maintains link
  - Transport layer monitors transmission/reception errors
  - Network layer routes packet along shortest path
  - Data Link layer formats frames, verifies address
  - Physical layer converts data to electrical signal
- OSI model is also applied to network hardware and software communications

| OSI Layer    | Corresponding Network Hardware or Software                                                                                                                                                               |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application  | Application programming interfaces, Internet browsers, messaging and e-mail software,<br>software to access a computer remotely from another computer, and gateways                                      |
| Presentation | Data translation software, data encryption software, graphics formatting (.gif and .jpg file formatting), and gateways                                                                                   |
| Session      | Network equipment software drivers, computer name lookup software, half- and full-<br>duplex capabilities, remote procedure call (RPC) capability to run a program on a remote<br>computer, and gateways |
| Transport    | Network equipment software drivers, flow control software and capabilities, Layer 4<br>switches, and gateways                                                                                            |
| Network      | Gateways, routers, routing protocols, source-route bridges, and Layer 3 switches                                                                                                                         |
| Data Link    | Network interface cards, intelligent hubs and bridges, Layer 2 switches, and gateways                                                                                                                    |
| Physical     | Cabling, cable connectors, multiplexers, transmitters, receivers, transceivers, passive and active hubs, repeaters, and gateways                                                                         |

© Cengage Learning 2013

# Table 2-2 Network hardware and software associated with the OSI model layers

# Understanding the Role of Requests for Comments

- Request for Comment (RFC): basis for standards and conventions
  - Originated in 1969
  - Prepared and distributed as a way to further networking, Internet, and computer communications
  - Help ensure that network standards are provided so one network can talk to another
- RFCs managed by IETF (Internet Engineering Task Force)
  - RFCs evaluated by IESG (Internet Engineering Steering Group) within IETF

#### Understanding the Role of Requests for Comments

- RFCs are assigned a unique identification number to provided a way to track it
- When an RFC is widely accepted it if often adopted as a standard

# LAN Transmission Methods

- Two main LAN transmission methods for wire-based networks
  - Ethernet: defined in IEEE 802.3 specifications
  - Token ring: defined in IEEE 802.5 specifications
- Ethernet is more widespread than token ring
   Has more high-speed and expansion options
- Fiber Distributed Data Interface (FDDI): high-speed variation of token ring

## Ethernet

- Takes advantage of bus and star topologies
- Uses a control method: Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
  - Algorithm that transmits and decodes formatted frames
- Permits only one node to transmit at a time
  - All nodes wishing to transmit frame are in contention
  - No single node has priority over another node
  - Nodes listen for packet traffic on cable
    - Carrier sense: process of detecting signal presence
- Collision occurs if two nodes transmit simultaneously
   Sending node recovers with collision detection software

# Ethernet

- Frames find destination through physical addressing
   Each node has a unique MAC address associated with NIC
- Each NIC requires network drivers suited for:
  - the network access method, data encapsulation format, and addressing method
- Data transmitted in Ethernet encapsulated in frames
  - composed of six predefined fields
    - Preamble
    - Start of frame delimiter (SFD or SOF):
    - Destination address (DA) and source address (SA):
    - Length (Len)
    - Data and pad
    - Frame check sequence or frame checksum (FCS)

| Preamble<br>56 |
|----------------|
|----------------|

Figure 2-15 The 802.3 frame format in bits

### Ethernet

- Ethernet II frame formatting method used on the Internet and other modern networks
  - Makes network transmissions more efficient by having a preamble that is 64 bits long
  - Also combines synchronization information with the start of frame (SOF) delimiter
  - Uses a 16-bit type field instead of a length field
  - Contains a 32-bit FCS field that performs a CRC in the same way as the regular 802.3 standard

# Token Ring

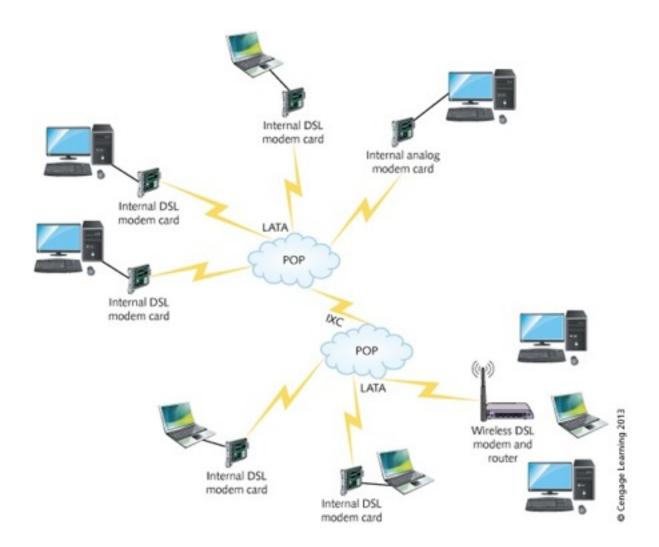
- Developed by IBM in the 1970s
  - Uses physical star topology and logic of ring topology
  - Data transmission up to 100 Mbps
- Multistation access unit (MAU): hub ensures packet circulated
- Token: a specialized packet continuously transmitted around the ring to determine when a node can send
  - Size: 24 bits
  - Structure: three 8-bit fields
    - Starting delimiter (SD)
    - Access control (AC)
    - Ending delimiter (ED)
- Frame associated with token has thirteen fields

# Token Ring

- Using a token
  - Node must capture token to transmit
  - Node builds frame using token fields
  - Resulting frame sent around ring to target node
  - Target node acknowledges frame received and read
  - Target node sends frame back to transmitting node
  - Transmitting node reuses token or returns it to ring
- Active monitor uses broadcast frame to check nodes
- Beaconing: node sends frame to indicate problem
   Ring tries to self-correct problem
- Token ring networks are reliable
  - Broadcast storms and interference are rare

## Fiber Distributed Data Interface

- Fiber Distributed Data Interface (FDDI)


   Standard for high-capacity data throughput 100 Mbps
- FDDI uses fiber-optic cable communications medium
- FDDI uses timed token access method
  - Send frames during target token rotation time (TTRT)
  - Allows for parallel frame transmission
- Two types of packets
  - Synchronous communications (time-sensitive traffic)
  - Asynchronous communications (normal traffic)
- Two classes of nodes connect to FDDI network
  - Class A: nodes attached to both rings (hubs)
  - Class B: node (workstation) attached via Class A node

# WAN Network Communications

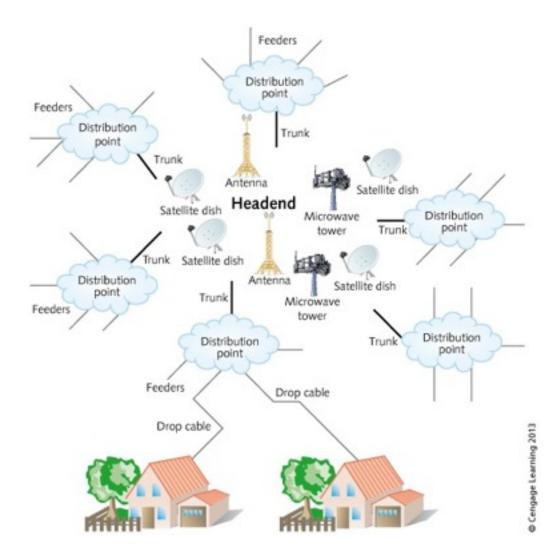
- WANs are built on topologies and network transmission techniques
  - WAN transmission techniques are very complex
  - Providers do not provide detailed specifications
- WAN network service providers
  - Telecommunications companies
    - Especially regional telephone companies (telcos or RBOCs (regional bell operating companies))
  - Cable TV companies
  - Satellite TV companies

#### **Telecommunications WANs**

- Plain old telephone service (POTS)
  - Carry most basic WAN communications
  - 56-Kbps dial-up access, Integrated Service Digital Network (ISDN), Digital Subscriber Line (DSL)
- Topology used by regional bell operating companies (RBOCs) is often referred to as a "cloud"
  - RBOC provides the local access and transport area (LATA) lines
  - IXC lines join RBOC and long distance carrier
    - Point of presence (POP) is the term for where LATA lines are connected to IXC lines



#### Figure 2-17 POTS topology


Hands-on Networking Fundamentals

#### **Telecommunications WANs**

- T-carrier lines: dedicated telephone line for data communications
  - Example: states use T-carrier lines to connect branch offices to government headquarters in the state capitol
- Smallest T-carrier service is a T-1 line, which offers 1.544 Mbps data communication
- Alternative to T-carrier: synchronous 56-Kbps service

# Cable TV WANs

- Architecture consists of star-shaped locations
- Headend is the focal point in the star
  - Central receiving point for various signals
    - Grouping of antennas, cable connections, satellite dishes, microwave towers
  - Signals distilled, transferred to distribution centers
- Distribution centers transfer signals to feeder cables
   Homes use drop cables to tap into feeder cables
- Cable modems convert signals for computer use
  - Upstream frequency differs from downstream
  - Example: 10 Mbps upstream and 50 Mbps downstream



#### Figure 2-19 Cable TV WAN

Hands-on Networking Fundamentals

#### Wireless WANs

- Wireless WANS: use of radio, microwaves, satellites
- Topology of radio communications
  - Connect wireless LAN to wireless bridge or switch
  - Connect bridge or switch to antenna
  - Antenna transmits wave to distant antenna
- Topology of microwave communication
  - Connect microwave dish to LAN
  - Dish transmits to microwave dish at remote location
- Topology of satellite communications
  - Satellite dish transmits to satellite in space
  - Satellite relays signal to satellite dish at remote location



#### Figure 2-20 Radio wave WAN

Hands-on Networking Fundamentals

#### Wireless WANs

- 2G Wireless Networks 2<sup>nd</sup> generation (2G) mobile telephone network
  - Uses modern digital signals broadcast from radio transmission antennas instead of analog signals
  - Has been upgraded to 2.5G and later to 2.75G capable of up to 236.8 Kbps transmissions
- 3G Wireless Networks Enable users to access the Internet and transmit data at up to 5.8 Mbps upstream and 14.4 Mbps downstream
  - Supports digital voice, data applications, streaming music, full motion video, Internet access, voice mail, conference calling and other wireless communications

#### Wireless WANs

- 4G Wireless Networks 4<sup>th</sup> generation (4G)
  - Uses the International Mobile Telecommunications-Advanced (IMT-Advanced) standards
  - Can yield up to 100 Mbps for high-mobility devices
  - Besides higher data speeds than 3G, 4G offers:
    - Enhanced sound quality
    - High-definition streaming video
    - Video conferencing
    - Better security
  - Vendors are extending 4G into devices such as refrigerators, vending machines and TV phones

# WAN Transmission Methods

- Switching techniques creating data paths (channels)
  - Time Division Multiple Access (TDMA): divides the channels into distinct time slots
  - Frequency Division Multiple Access (FDMA): divides the channels into frequencies instead of time slots
  - Statistical multiple access: bandwidth of cable dynamically allocated based on application need
  - Circuit switching: involves creating a dedicated physical circuit between the sending and receiving nodes
  - Message switching: uses store-and-forward method to transmit data from sending to receiving node
  - Packet switching: establishes a dedicated logical circuit between the two transmitting nodes

#### Putting It All Together: Designing an Ethernet Network

- Scenario: New campus needs a new network
- Reasons for choosing Ethernet technology
  - Ethernet enjoys widespread vendor/technical support
  - Compatible with star-bus topology popular with LANs
  - Network upgrades easily to higher bandwidths
  - Standards exist for cable and wireless versions
  - Ethernet network scales well, adapts well to WANs
  - Network devices on old campus may be used
  - Many options for Internet connections
- Ethernet appropriate for all areas of new campus

# Summary

- The 7-layer OSI model is the foundation of LAN and WAN communications
- Bottom layers: connectivity, frame formation, encoding, signal transmission
- Middle layers: establish and maintain sessions
- Upper layers: presentation of data, data encryption
- Information is transported over LANs by using a LAN transmission or access method. Ethernet is most commonly used method.

# Summary

- Ethernet uses bus and star topology
- Ethernet control method: Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
- Token ring combines physical star topology with logical ring topology
- Fiber Distributed Data Interface (FDDI): alternative high-speed LAN transmission method

# Summary

- WAN communications provided by telcos, cablecos, and satellite TV companies
- Wireless WANs use radio, microwave, and satellite communications
- WAN transmission methods use six common switching techniques